	Advantage	Disadvantage	Current practice	Research questions
Electronic/automatic UO registration (1, 2)	 Automatically incorporated in the patient data management system. Continuous registration of UO. Automatic staging of AKI severity based upon UO criterion. Integration of urinary electrolyte monitoring and intra-abdominal pressure. 	- Additional costs for disposables and hard- /software.	 Not (yet) routinely applied in most ICUs. Applied in selected patient populations in some ICUs. 	 An ongoing study will evaluate the impact on errors and nursing workload (NCT03636113). Does automatic UO registration and AKI staging improve clinical outcome? (NCT0523045)
Furosemide stress test (Urinary output in the two hours after furosemide 1 mg/kg in naïve patients, 1,5 mg/kg in pre-exposed patients)	 Accurate prediction of AKI 3 (AUROC 0,87) (3). Accurate prediction of the need for KRT (4). Furosemide frequently administered in AKI patients with fluid overload. 	- May worsen kidney function in prerenal AKI. To minimize this risk, intravenous substitution with crystalloids at a rate of one ml for each ml UO per hour during the six hours after the FST was advised in the original study.	- Increasingly incorporated in general assessment in most ICUs but not always in the correct dose.	- Is the renal response to other doses of furosemide also informative?
Kidney biopsy	 Detailed insight in the pathological alterations in the glomeruli and tubules. Improved insight in the underlying molecular mechanisms which may identify new biomarkers. 	- Risk of bleeding and other complications.	 Only performed in specific indications, seldomly in critically ill patients. Not routinely performed for septic or ischemic AKI. 	 Risk-benefit needs to be further explored. A multicentric prospective cohort study including all kidney biopsies for AKI is running (5).
Urine sediment (6)	 Clear association between the presence of renal tubular epithelial cells and granular casts and the progression of AKI. Low costs. 	 Performance of the test depends on experience. Need for specific equipment. Automated microscopy probably less performant 	 Rarely performed in critically ill patients. Studies done on subgroup of AKI patients, many not critically ill (selection by nephrologist consult) 	 Can automated microscopy add information in the assessment of early AKI? Additional benefit of serial microscopic evaluation? (7)

	- AUROC to predict AKI progression 0.75.	(although not properly investigated).		
Biomarkers (8)				
KIM-1 (9,10)	 Marker of renal cell damage. Good prediction AKI and AKI severity. Associated with long-term mortality in patients with and without AKI. 	- Elevated in inflammatory diseases and chronic proteinuria.	- Not commercially available although a lateral flow dipstick that yields results within 15 minutes has been developed (11).	
Cystatin C (12)	 Stable plasma levels, almost fully filtered over the glomerular basal membrane and consequently a good marker of the glomerular filtration rate. Good accuracy to diagnose and predict AKI. 	- Different cut-offs used.	- Commercially available in most ICUs	- Define cut-off values for different clinical settings
NGAL (13)	 Marker of renal cell damage. Diagnosis of AKI and AKI severity. Studied in cardiac surgery patients, coronary angiography, ICU patients and emergency patients. Can be measured on urine and plasma. 	 Aspecific. Lack of clear cut-off. 	- Commercially available in Europe but not widely used in clinical practice.	 Ideal cut-off must be identified. Cost-effectiveness needs to be further evaluated (14).
L-FABP (8,10)	 Marker of renal cell damage. Accurate biomarker to diagnose AKI. Associated with long-term mortality in patients with AKI (14). 		- Not commercially available (except in Japan) (10).	

	- Can be measured on urine			
IL18 (8,10)	 Marker of renal cell damage. Good prediction of AKI and AKI severity. Associated with long term mortality in patients with and without AKI (15). 	- Elevated in inflammatory state.	- Not commercially available.	
TIMP-2xIGFBP7 (NephroCheck®) (16)	 Prediction of AKI development with very good accuracy when combined with clinical variables (AUROC 0.86) (17). Improved outcome when applying KDIGO care bundle in patients with an elevated TIMP-2xIGFBP7 in a single and multicentre study of cardiac surgery patients and a single centre study in patients with major surgery patients (18-20). 	- Diagnostic accuracy varies in different studies and might be affected by comorbidities (21).	- Commercially available in Europe and the USA.	 Confirmation of beneficial effect of KDIGO care bundle in patients with elevated TIMP-2xIGFBP7 and major surgery. Ability to select patients for other interventional trials. Cost-effectiveness to be further evaluated (14).
Urine angiotensinogen	 Predictive for AKI, especially in decompensated heart failure (AUROC for AKI prediction 0.84) (22). Predictive for severe AKI and other adverse outcomes (23). 	- Uncertainty about the predictive value for AKI in populations other than heart failure (e.g., after cardiopulmonary bypass (24)).	- Not commercially available.	- Validation in other ICU populations.
CCL14 (25)	 Predictive for persisting AKI in patients with AKI stage 2 or 3. Validated in ICU population (26). 		- Not commercially available.	- Ability to select patients in whom initiation of kidney replacement therapy is beneficial as compared to watchful waiting?

Syndecan 1 (27)	 Biomarker for endothelial cell dysfunction. Association with fluid overload after cardiac surgery. Association with progressive AKI in cardiac surgery. 	 No data on accuracy to predict AKI progression. No validation studies. 	- Not commercially available.	- Can fluid management based on Syndecan 1 concentrations reduce AKI or AKI progression?
Contrast-enhanced ultrasonography (28)	 Non-invasive, non- nephrotoxic bedside test. Quantification of renal cortical microcirculation. The degree of cortical microcirculation is predictive for severe AKI in patients with septic shock (AUROC 0.82). Useful to assess the effect of fluid resuscitation and vasopressors on cortical perfusion. 	 Time-consuming. Need for additional training. 	- Currently not widely used in critically ill patients.	- Can renal cortical perfusion be used to individualize treatment?
Real-time GFR (29)	 Real time information on the glomerular function. Information on the total plasma volume is also provided. 	- Additional costs for percutaneous detection.	- Not available for clinical use.	 Phase 2 trials in non- critically ill are running. If accurate in non-ICU patients, accuracy in critically ill patients needs to be further explored.
Artificial intelligence (30-33)	 Separate predictions for AKI, severe AKI and need for KRT are possible. May be helpful to subphenotype AKI (34) 	 Large databases needed. May be less accurate in patients treated in other hospitals or other departments. 	 Several machine-learning predictions available but only few are validated. Not routinely incorporated in clinical practice. 	- Effect of AKI prediction on the clinical outcome remains to be investigated.

- All above diagnostic tests		
can be integrated in the		
models.		

Table: Overview of the diagnostic tools that are available or under investigation for AKI diagnosis. AKI: acute kidney injury, AUROC: area under the receiver-operating-curve, CCL14: C-C motif chemokine ligand 14, GFR: glomerular filtration rate, ICU: intensive care unit, IGFBP7: insulin-like growth factor-binding protein, IL18: interleukin 18, KIM-1: kidney injury molecule 1, KRT: kidney replacement therapy, L-FABP: liver-type fatty acid binding protein, NGAL: neutrophil gelatinase-associated lipocalin, TIMP-2: tissue inhibitor of metalloproteinase 2, UO: urinary output.

References

- 1. Minor J, Smith A, Deutsch F and Kellum J. (2021) Automated versus manual urine output monitoring in the intensive care unit. Sci Rep 11(1):8-12. Doi: 10.1038/s41598-021-97026-8.
- 2. Willner D, Goldman A, Azran H, Stern T, Kirshenbom D and Rosenthal G. (2021) Early identification of acute kidney injury in the ICU with real-time urine output monitoring: a clinical investigation. BMC Nephrol 22:293. Doi: 10.1186/s12882-021-02485-w.
- 3. Chawla L, Davison D, Brasha-Mitchell E, et al. (2013) Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care 17:R207. Doi: 10.1186/cc13015.
- 4. Lumlertgul N, Peerapornratana S, Trakarnvanich T, et al. (2018) Early versus standard initiation of renal replacement therapy in furosemide stress test non-responsive acute kidney injury patients (the FST trial). Crit Care 22:101. Doi: 10.1186/s13054-018-2021-1.
- 5. De Boer I, Alpers C, Azeloglu E, et al. (2021) Rationale and design of the Kidney Precision Medicine Project. Kidney Internat 99:498-510. doi: 10.1016/j.kint.2020.08.039.
- 6. Perazella M, Coca S, Hall I, Iyanam U, Koraishy M, and Parikh C. (2010) Urine microscopy is associated with severity and worsening of acute kidney injury in hospitalized patients. Clin J Am Soc Nephrol 5:402-8. doi: 10.2215/CJN.06960909.
- 7. Varghese V, Soledad Rivera M, Alalwan A, Alghamdi A, Gonzalez M and Velez J. (2021) Diagnostic utility of serial microscopic examination of the urinary sediment in acute kidney injury. Kidney360 2:182-91. doi: 10.34067/KID.0004022020.
- 8. Desanti De Oliveira B, Xu K, Shen T, et al. (2019) Molecular nephrology: types of acute tubular injury. Nature Rev 15:599-612. doi: 10.1038/s41581-019-0184-x.
- 9. Han W, Bailly V, Abihhandani R, Thadhani R and Bonventre J. (2002) Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Internat 62:237-44. doi: 10.1046/j.1523-1755.2002.00433.x.
- 10. Ostermann M, Karsten E and Lumlertgul N. (2022) Biomarker-based management of AKI: fact or fantasy? Nephron 146(3):295-301. doi: 110.1159/000518365.

- 11. Vaidya V, Ford G, Waikar S, et al. (2009) A rapid urine test for early detection of kidney injury. Kidney Int 76(1):108-14. doi: 10.1038/ki.2009.96.
- 12. Zhang Z, Lu B, Sheng X and Jin N. (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 58(3):356-65.
- Albert C, Zapf A, Haase M, et al. (2020) Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis. Am J Kidney Dis 76(6):826-41. doi: 10.1053/j.ajkd.2020.05.015.
- 14. Jacobson E, Sawhney S, Brazzelli M, et al. (2021) Cost-effectiveness and value of information analysis of NephroCheck and NGAL tests compared to standard care for the diagnosis of acute kidney injury. BMC Nephrol 22:399. doi: 10.1186/s12882-021-02610-9.
- 15. Coca S, Garg A, Thiessen-Philbrook H, Koyner J, Patel U, Krumholz H, Shlipak M and Parikh C. (2014) Urinary biomarkers of AKI and mortality 3 years after cardiac surgery. J Am Soc Nephrol 25(1):1063-71. doi: 10.1681/ASN.2013070742.
- 16. Kashani K, Al-Khafaji A, Ardiles T, et al (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17(1):R25. doi: 10.1186/cc12503.
- 17. Bihorac A, Chawla L, Shaw A, et al; (2014) Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med 189(8):932-9. doi: 10.1164/rccm.201401-0077OC.
- Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J and Zarbock A. (2017) Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med 43(11):1551-61. doi: 10.1007/s00134-016-4670-3.
- Zarbock A, Küllmar M, Ostermann M, et al. (2021) Prevention of cardiac surgery-associated acute kidney injury by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: the PrevAKI-multicenter randomized controlled trial. Anesth Analg 133(2):292-302. doi: 10.1213/ANE.00000000005458.
- 20. Göcze I, Jauch D, Götz M et al (2018) Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study. Ann Surg 267(6):1013-1020. doi: 10.1097/SLA.00000000002485.
- 21. Bell M, Larsson A, Venge P, Bellomo R and Martensson J. (2015) Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury. Dis Markers 158658. doi: 10.1155/2015/158658.
- 22. Yang X, Chen C, Tian J, et al. (2015) Urinary angiotensiogen level predicts AKI in acute decompensated heart failure: a prospective, two-stage study. J Am Soc Nephrol 26:2032-41. doi: 10.1681/ASN.2014040408.
- 23. Alge J, Karakala N, Neely B, Janech M, Tumlin J, Chawla L, Shaw A and Arthur J. (2013) Association of elevated urinary concentration of renin-angiotensin system components and severe AKI. Clin J Am Soc Nephrol 8:2043-52. doi: 10.2215/CJN.03510413.
- 24. Moriyama T, Hagihara S, Shiramomo T, Nagaoka M, Iwakawa S and Kanmura Y (2016). Comparison of three early biomarkers for acute kidney injury after cardiac surgery under cardiopulmonary bypass. J Intensive Care 4:41. doi: 10.1186/s40560-016-0164-1.
- 25. Hoste E, Bihorac A, Al-Khafaji A, et al. (2020) Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med 46(5):943-53. doi: 10.1007/s00134-019-05919-0.

- 26. Hoste EA, Vaara ST, De Loor J, Haapio M, Nuytinck L, Demeyere K, Pettilä V and Meyer E (2020) Urinary cell cycle arrest biomarkers and chitinase 3-like protein 1 (CHI3L1) to detect acute kidney injury in the critically ill: A post hoc laboratory analysis on the FINNAKI cohort. Crit Care 24(1):144. doi: 10.1186/s13054-020-02867-w.
- 27. Xu J, Jiang W, Li Y, et al. (2021) Association between syndecan-1, fluid overload, and progressive acute kidney injury after adult cardiac surgery. Front Med (Lausanne) 8:648397. doi: 10.3389/fmed.2021.648397.
- 28. Harrois A, Grillot N, Figueiredo S and Duranteau J. (2018) Acute kidney injury is associated with a decrease in cortical renal perfusion during septic shock. 22:161. https://doi.org/10.1186/s13054-018-2067-0
- 29. Schneider AG and Molitoris BA (2020) Real-time glomerular filtration rate: improving sensitivity, accuracy and prognostic value in acute kidney injury. Curr Opin Crit Care 26(6), 549–555. doi: 10.1097/MCC.00000000000770.
- 30. Flechet M, Güiza F, Schetz M, Wouters P, Vanhorebeek I, Derese I, Gunst J, Spriet I, Casaer M, Van den Berghe G and Meyfroidt G. AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin. (2017) Intensive Care Med 43:764-773. Doi 10.1007/s00134-017-4678-3.
- 31. Tomašev N, Glorot X, Rae J, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. (2019) Nature 572:116-9. Doi: 10.1038/s41586-019-1390-1.
- 32. Chiofolo C, Chbat N, Ghosh E, Eshelman L and Kashani K. (2019) Automated continuous acute kidney injury prediction and surveillance: a random forest model. Mayo Clin Proc 94(5);783-92. Doi: 10.1016/j.mayocp.2019.02.009.
- 33. De Vlieger G, Kashani K and Meyfroidt G (2020) Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. Curr Opin Crit Care 26(6), 563–573. doi: 10.1097/MCC.00000000000775.
- 34. Chaudhary K, Vaid A, Duffy A, et al. (2020) Utilization of deep learning for subphenotype identification in sepsis-associated acute kidney injury. Clin J Am Soc Nephrol 15:1557-65. doi: 10.2215/CJN.09330819