Efficacy and safety of levosimendan in patients with sepsis: a systematic review and network meta-analysis

Ruimin Tan, He Guo, Zinan Yang, Hui
Hui Yang, Qinghao Li, Qiong Zhu, Quansheng Du^*

* Correspondence: Quansheng Du Address: No. 348 Heping West Road,Xinhua District, Shijiazhuang City, Hebei Province, the People's Republic of China. E-mail: dqs888@126.com Phone number: +86 13230163769

Supplementary Material 1 Statistical Analysis Protocol and Results

I Cardiac index

In this part, we used "gemtc" package(version 1.0-1) in R(version 4.2.3) to conduct the Bayesian Meta analysis.

1 Building Network

- 1.1 Function used: mtc.network
- 1.2 Results:

Figure SI-1 Network of Cardiac index

- 2 Modelling and Running
 - 2.1 Function used: mtc.model, mtc.run
- **3** Results Presentation:
 - **3.1** Forest plot (Placebo was set as the baseline to calculate the relative effect among arms)

Figure SI-3.1 Relative Effect Forest Plot of Cardiac index (baseline: placebo)

Abbreviation: CrI, credible interval.

3.2 League table

Placebo			
-0.01 (-0.47, 0.43)	Dob		
-0.89 (-1.36, -0.41)	-0.87 (-1.22, -0.52)	LEV 0.1ug/kg/min	
-0.54 (-0.99, -0.12)	-0.53 (-0.74, -0.33)	0.34 (-0.06, 0.72)	LEV 0.2ug/kg/min

3.3 Rank of probability

Notes: 1, Placebo; 2, Dob; 3, LEV 0.1ug/kg/min;4, LEV 0.2ug/kg/min.

3.4 SUCRA rank of probability

Table SI-3.4 SUCRA rank of probability of cardiac index.

Intervention SUCRA

Placebo	16.02%
Dob	17.61%
LEV 0.1ug/kg/min	98.57%
LEV 0.2ug/kg/min	67.80%

Abbreviation: SUCRA, surface area under the cumulative ranking curve.

4 Quality Control

4.1 Convergence test: PSRF value

Potential scale reduction factors:

	Point	est.	Upper	C.I.
d.1.3		1		1
d.1.4		1		1
d.3.2		1		1
sd.d		1		1

Multivariate psrf

Figure SI-4.1 PSRF of the Bayesian analysis of cardiac index

Abbreviation: PSRF, Potential scale reduction factors.

Note: The closer the PSRF value is to 1, the better. >1.05 indicates unsatisfactory convergence.

4.2 Consistency hypothesis: inconsistency test.

4.2.1 Function used: mtc.nodesplit

4.2.2 Results:

Figure SI-4.2.2 Inconsistency test of the Bayesian analysis of cardiac index

Note: 1, Placebo; 2, Dob; 3, LEV 0.1ug/kg/min;4, LEV 0.2ug/kg/min. *P* value > 0.05 indicates that there is no significant inconsistency which means the direct, indirect and network comparison is consistent.

4.3 Homogeneity hypothesis: Heterogeneity analysis

4.3.1 Function used: mtc.anohe

4.3.2 Results

Study	ľ^2		Mean Difference (95% Crl)
3 vs 1			
J.S.Shi 2020		-0	0.80 (0.52, 1.1)
Pooled (pair-wise)			0.80 (0.095, 1.5)
Indirect (back-calculated)		0	0.95 (0.31, 1.6)
Pooled (network)	0.0%		0.88 (0.41, 1.4)
4 vs 1			
A.C.Gordon 2016		-0	0.50 (0.29, 0.71)
A.Morelli 2006		——————————————————————————————————————	0.79 (0.16, 1.4)
Pooled (pair-wise)	19.1%		0.60 (0.072, 1.2)
Indirect (back-calculated)			0.43 (-0.30, 1.2)
Pooled (network)	0.0%		0.54 (0.12, 0.99)
	2	0	2
	-2	0	2
Study	ľ^2	I	Mean Difference (95% Crl)
3 vs 2			
W.Wang 2018			0.85 (0.50, 1.2)
X.M.Zhou 2023		-0-	1.1 (0.93, 1.3)
Z.Fan 2019		-0	0.71 (0.46, 0.97)
Pooled (pair-wise)	73.6%		0.90 (0.49, 1.3)
Indirect (back-calculated)			0.79 (0.084, 1.5)
Pooled (network)	65.0%		0.87 (0.52, 1.2)
	-2	0	2
Study	ľ^2		Mean Difference (95% Crl)
4 vs 2			
A Morelli 2005		-0-	0 40 (0 23 0 57)
A Morelli 2000			0.29(-0.50, 1.1)
J B Meng 2016		-0-	0.30 (0.10, 0.50)
M.X.Fang 2014			1.2 (0.76, 1.6)
S.B.Yang 2019			0.85 (0.53, 1.2)
T.Sun 2023		- <u>~</u>	0.23 (-0.013, 0.47)
Y.P.Lan 2018		-0	0.35 (0.12, 0.58)
Z.Hajjej 2017			0.47 (-0.70, 1.6)
Z.J.Yan 2016		-0	1.1 (0.80, 1.4)
Z.W.Lu 2020		-0-	0.40 (0.21, 0.60)
Z.Z.Lai 2016		-0-	0.30 (0.089, 0.51)
Pooled (pair-wise)	79.3%		0.52 (0.31, 0.75)
Indirect (back-calculated)	77 70/	0	0.58 (0.033, 1.1)
Pooled (network)	111%	_ _ ■_	0.53(0.33(0.74))

Figure SI-4.3.2 Heterogeneity analysis of the Bayesian analysis of cardiac index

Note: From the figure we could see, there exists no significant heterogeneity between any two arms, which allows the use of fixed effect model to estimate the pooling results.

II Lactic acid

In this part, we used "gemtc" package(version 1.0-1) in R(version 4.2.3) to conduct the Bayesian Meta analysis.

1 Building Network

- **1.1** Function used: *mtc.network*
- 1.2 Results:

Figure SII-1 Network of Lactic acid

- 2 Modelling and Running
 - 2.1 Function used: mtc.model, mtc.run
- **3** Results Presentation:
 - **3.1** Forest plot (Placebo was set as the baseline to calculate the relative effect among arms)

Abbreviation: CrI, credible interval.

3.2 League table

Table SII-3.2 League Table of Lactic acid

Placebo					
-1.25 (-1.57, - 0.94)	Dob				
-0.43 (-1.71, 0.84)	0.82 (-0.44, 2.08)	Mil			
-0.03 (-0.82, 0.75)	1.22 (0.5, 1.94)	0.4 (-0.88, 1.68)	LEV 0.075ug/kg/min		
0.47 (0.04, 0.9)	1.72 (1.4, 2.04)	0.9 (-0.39, 2.2)	0.5 (-0.29, 1.29)	LEV 0.1ug/kg/min	
0.01 (-0.23, 0.26)	1.27 (1.05, 1.49)	0.44 (-0.8, 1.7)	0.05 (-0.7, 0.8)	-0.45 (-0.83, -0.08)	LEV 0.2ug/kg/min

3.3 Rank of probability

Figure SII-3.3 Bar chart of rank of probability of lactic acid.

Notes: 1, Placebo; 2, Dob; 3, Mil; 4, LEV 0.075ug/kg/min;5, LEV 0.1ug/kg/min;6, LEV 0.2ug/kg/min.

3.4 SUCRA rank of probability

Table SII-3.4 SUCRA rank of probability of lactic acid.

Intervention	SUCRA
Placebo	45.00%
Dob	97.98%
Mil	65.04%
LEV 0.075ug/kg/min	44.92%
LEV 0.1ug/kg/min	4.34%
LEV 0.2ug/kg/min	42.73%

Abbreviation: SUCRA, surface area under the cumulative ranking curve.

4 Quality Control

4.1 Convergence test: PSRF value

Potential scale reduction factors:

	Point	est.	Upper	C.I.
d.2.4		1		1
d.2.5		1		1
d.2.6		1		1
d.6.1		1		1
d.6.3		1		1

```
Multivariate psrf
```

1

Figure SII-4.1 PSRF of the Bayesian analysis of lactic acid

Abbreviation: PSRF, Potential scale reduction factors.

Note: The closer the PSRF value is to 1, the better. >1.05 indicates unsatisfactory convergence.

4.2 Consistency hypothesis: inconsistency test.

4.2.1 Function used: mtc.nodesplit

4.2.2 Results:

Figure SII-4.2.2 Inconsistency test of the Bayesian analysis of lactic acid

Note: 1, Placebo; 2, Dob; 3, Mil; 4, LEV 0.075ug/kg/min;5, LEV 0.1ug/kg/min;6, LEV 0.2ug/kg/min. *P* value > 0.05 indicates that there is no significant inconsistency which means the direct, indirect and network comparison is consistent.

4.3 Homogeneity hypothesis: Heterogeneity analysis

4.3.1 Function used: mtc.anohe

4.3.2 Results

	I^2		Mean Difference (95% Crl)
5 vs 1			
X.S.Hua 2022			-1.1 (-2.1, -0.11)
Pooled (pair-wise)			-1.1 (-2.1, -0.096)
Indirect (back-calculated)		0	-0.33 (-0.80, 0.15)
Pooled (network)	48.4%		-0.47 (-0.90, -0.040)
6 vs 1			
A.C.Gordon 2016			0.081 (-0.17, 0.33)
A.Morelli 2006			-1.3 (-2.5, -0.083)
Pooled (pair-wise)	78.9%	+	0.024 (-0.22, 0.27)
Indirect (back-calculated)			-0.96 (-2.2, 0.26)
Pooled (network)	72.0%	+	-0.015 (-0.26, 0.22)
4 vs 2			
H.J.Liu 2021			-1.1 (-1.9, -0.37)
Pooled (pair-wise)			-1.1 (-1.9, -0.36)
Indirect (back-calculated)			-2.1 (-4.3, 0.12)
Pooled (network)	0.0%		-1.2 (-1.9, -0.50)
		3 0	3
	-	0	0

Figure SII-4.3.2 Heterogeneity analysis of the Bayesian analysis of lactic acid

Note: From the figure we could see, there exists no significant heterogeneity between any two arms, which allows the use of fixed effect model to estimate the pooling results.

III 28-day mortality

In this part, we used "gemtc" package(version 1.0-1) in R(version 4.2.3) to conduct the Bayesian Meta analysis.

- 1 Building Network
 - **1.1** Function used: *mtc.network*
 - 1.2 Results:

Figure SIII-1 Network of 28-day mortality

2 Modelling and Running

2.1 Function used: mtc.model, mtc.run

3 Results Presentation:

3.1 Forest plot (Placebo was set as the baseline to calculate the relative effect among arms)

Figure SIII-3.1 Relative Effect Forest Plot of 28-day mortality (baseline: placebo)

Abbreviation: CrI, credible interval.

3.2 League table

Table SIII-3.2 League Table of 28-day mortality

Placebo			
0.77 (0.6, 0.99)	Dob		
0.67 (0.28, 1.53)	0.87 (0.36, 1.98)	Mil	
1.38 (0.61, 3.38)	1.78 (0.82, 4.26)	2.07 (0.77, 6.18)	LEV 0.075ug/kg/min

1.01 (0.74, 1.37)	1.31 (1.01, 1.71)	1.51 (0.64, 3.73)	0.73 (0.3, 1.68)	LEV 0.1ug/kg/min	
0.96 (0.82, 1.13)	1.25 (1.01, 1.55)	1.44 (0.64, 3.42)	0.7 (0.29, 1.57)	0.95 (0.71, 1.29)	LEV 0.2ug/kg/min

3.3 Rank of probability

Figure SIII-3.3 Bar chart of rank of probability of 28-day mortality.

Notes: 1, Placebo; 2, Dob; 3, Mil; 4, LEV 0.075ug/kg/min;5, LEV 0.1ug/kg/min;6, LEV 0.2ug/kg/min.

3.4 SUCRA rank of probability

Table SIII-3.4 SUCRA rank of probability of 28-day mortality.

Intervention	SUCRA
Placebo	63.57%
Dob	15.43%
Mil	19.31%
LEV 0.075ug/kg/min	84.05%
LEV 0.1ug/kg/min	63.69%
LEV 0.2ug/kg/min	53.94%

Abbreviation: SUCRA, surface area under the cumulative ranking curve.

4 Quality Control

4.1 Convergence test: PSRF value

Potential	scale	reduct	ion fa	actors:
Poir	nt est.	Upper	c.I.	

d.2.4		1		1
d.2.5		1		1
d.2.6		1		1
d.6.1		1		1
d.6.3		1		1
Multi	variate	e psrt	F	
1				

Figure SIII-4.1 PSRF of the Bayesian analysis of 28-day mortality

Abbreviation: PSRF, Potential scale reduction factors.

Note: The closer the PSRF value is to 1, the better. >1.05 indicates unsatisfactory convergence.

4.2 Consistency hypothesis: inconsistency test.

4.2.1 Function used: mtc.nodesplit

4.2.2 Results:

Figure SIII-4.2.2 Inconsistency test of the Bayesian analysis of 28-day mortality

Note: 1, Placebo; 2, Dob; 3, Mil; 4, LEV 0.075ug/kg/min;5, LEV 0.1ug/kg/min;6, LEV 0.2ug/kg/min. *P* value > 0.05 indicates that there is no significant inconsistency which means the direct, indirect and network comparison is consistent.

4.3 Homogeneity hypothesis: Heterogeneity analysis

4.3.1 Function used: mtc.anohe

4.3.2 Results

Study	ľ^2			Risk Ratio (95% Crl)
5 vs 1				
B.J.Su 2018				0.97 (0.41, 2.3)
X.S.Hua 2022				0.88 (0.51, 1.5)
Pooled (pair-wise)	0.0%			0.90 (0.58, 1.4)
Indirect (back-calculated)			••••••	1.1 (0.71, 1.6)
Pooled (network)	0.0%		+	0.99 (0.73, 1.4)
6 vs 1				
A.C.Gordon 2016		_		1.1 (0.87, 1.4)
A.Torraco 2014		← •	+	0.53 (0.26, 1.1)
U.Janssens 2017		_		1.1 (0.87, 1.4)
Pooled (pair-wise)	52.7%	-		1.1 (0.89, 1.3)
Indirect (back-calculated)		0-		0.91 (0.52, 1.6)
Pooled (network)	33.9%		-	1.0 (0.88, 1.2)
	() 4	1	3
				~

Figure SIII-4.3.2 Heterogeneity analysis of the Bayesian analysis of 28-day mortality

Note: From the figure we could see, there exists no significant heterogeneity between any two arms, which allows the use of fixed effect model to estimate the pooling results.